Dieses Bild zeigt Wolfgang Rheinheimer

Wolfgang Rheinheimer

Herr Prof. Dr.-Ing.

Institutsleiter / Abteilungsleiter Funktionskeramiken
IKMT
Abteilung Funktionskeramiken

Kontakt

Allmandring 7b
70569 Stuttgart
Deutschland
Raum: 2.41

  1. 2024

    1. M. Kindelmann et al., “Cold sintering of BaZr<sub>0.8</sub>Y<sub>0.2</sub>O<sub>3-?</sub> ceramics: Phase formation and grain boundary properties,” Journal of the European Ceramic Society, vol. 44, Art. no. 5, 2024.
    2. J. N. Ebert, D. Jennings, L.-A. Schäfer, D. Sebold, and W. Rheinheimer, “Bulk and grain boundary conductivity in doped BaZrO<sub>3</sub>: Bulk contribution dominates at operating temperatures,” Scripta Materialia, vol. 241, 2024.
    3. W. S. Scheld et al., “Blacklight sintering of garnet-based composite cathodes,” Journal of the European Ceramic Society, vol. 44, Art. no. 5, 2024.
  2. 2023

    1. A. Klein et al., “Correction to: The Fermi energy as common parameter to describe charge compensation mechanisms: a path to Fermi level engineering of oxide electroceramics (Journal of Electroceramics, (2023), 51, 3, (147-177), 10.1007/s10832-023-00324-y),” Journal of Electroceramics, vol. 51, Art. no. 3, 2023.
    2. O. Guillon, W. Rheinheimer, and M. Bram, “A Perspective on Emerging and Future Sintering Technologies of Ceramic Materials,” Advanced Engineering Materials, vol. 25, Art. no. 18, 2023.
    3. D. Jennings et al., “The Formation of Stacking Faults in Barium Zirconate-Type Perovskites,” Chemistry of Materials, vol. 35, Art. no. 20, 2023.
    4. M. Kindelmann et al., “Highly conductive grain boundaries in cold-sintered barium zirconate-based proton conductors,” ChemRxiv, 2023.
    5. M. Kindelmann et al., “Cold sintering of BaZr<sub>0.7</sub>Ce<sub>0.2</sub>Y<sub>0.1</sub>O<sub>3-?</sub> ceramics by controlling the phase composition of the starting powders,” Scripta Materialia, vol. 224, 2023.
    6. M. Knight, I. Reimanis, A. Meyer, J.-H. Preusker, and W. Rheinheimer, “Dilute iron-doped polycrystalline strontium titanate: Tracking iron valence and local interactions,” Journal of the American Ceramic Society, vol. 106, Art. no. 8, 2023.
    7. B. Qu et al., “Defect redistribution along grain boundaries in SrTiO<sub>3</sub> by externally applied electric fields,” Journal of the European Ceramic Society, vol. 43, Art. no. 4, 2023.
    8. M. Seiz, H. Hierl, B. Nestler, and W. Rheinheimer, “Revealing process and material parameter effects on densification via phase-field studies,” arXiv, 2023.
    9. W. Rheinheimer, X. L. Phuah, L. Porz, M. Scherer, J. Cho, and H. Wang, “The impact of flash sintering on densification and plasticity of strontium titanate: High heating rates, dislocation nucleation and plastic flow,” Journal of the European Ceramic Society, vol. 43, Art. no. 8, 2023.
    10. A. Klein et al., “The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics,” Journal of Electroceramics, vol. 51, Art. no. 3, 2023.
    11. M. L. Weber et al., “Thermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfaces,” ChemRxiv, 2023.
    12. M. Scherer, M.-G. Ameres, W. Rheinheimer, T. Frömling, J. Rödel, and L. Fulanovi?, “Blacklight sintering of BaTiO<sub>3</sub> ceramics,” Journal of the European Ceramic Society, vol. 43, Art. no. 12, 2023.
    13. J.-H. Preusker, M. J. Hoffmann, and W. Rheinheimer, “Impact of AC and DC Electric Fields on the Microstructure Evolution in Strontium Titanate,” Advanced Engineering Materials, vol. 25, Art. no. 18, 2023.
    14. M. P. Zahler, S. M. Kraschewski, H. Störmer, D. Gerthsen, M. Bäurer, and W. Rheinheimer, “Grain growth and segregation in Fe-doped SrTiO<sub>3</sub>: Experimental evidence for solute drag,” Journal of the European Ceramic Society, vol. 43, Art. no. 4, 2023.
    15. M. P. Zahler, D. Jennings, M. Kindelmann, O. Guillon, and W. Rheinheimer, “Reactive FAST/SPS sintering of strontium titanate as a tool for grain boundary engineering,” Journal of the European Ceramic Society, vol. 43, Art. no. 15, 2023.
    16. L. Porz, M. Scherer, M. Höfling, A. Nakamura, W. Rheinheimer, and J. Rödel, “Dislocation-based high-temperature plasticity of polycrystalline perovskite SrTiO<sub>3</sub>,” Journal of Materials Science, vol. 58, Art. no. 6, 2023.
  3. 2022

    1. J. N. Ebert and W. Rheinheimer, “Electric field induced degradation of high-voltage PTCR ceramics,” Open Ceramics, vol. 11, 2022.
    2. L. Porz et al., “Microstructure and conductivity of blacklight-sintered TiO<sub>2</sub>, YSZ, and Li<sub>0.33</sub>La<sub>0.57</sub>TiO<sub>3</sub>,” Journal of the American Ceramic Society, vol. 105, Art. no. 12, 2022.
    3. T. P. Mishra et al., “Ultra-fast high-temperature sintering of strontium titanate,” Acta Materialia, vol. 231, 2022.
    4. L. Porz et al., “Blacklight sintering of ceramics,” Materials Horizons, vol. 9, Art. no. 6, 2022.
    5. P. Odenwald et al., “The Impact of Lithium Tungstate on the Densification and Conductivity of Phosphate Lithium-Ion Conductors,” ChemElectroChem, vol. 9, Art. no. 5, 2022.
    6. W. Rheinheimer, S. Baumann, and T. Frömling, “Editorial ?Conductivity in ceramics: From fundamentals to energy applications?,” Open Ceramics, vol. 10, 2022.
    7. S. Stich et al., “Room-temperature dislocation plasticity in SrTiO<sub>3</sub> tuned by defect chemistry,” Journal of the American Ceramic Society, vol. 105, Art. no. 2, 2022.
  4. 2021

    1. P. Xu et al., “Origin of High Interfacial Resistance in Solid-State Batteries: LLTO/LCO Half-Cells**,” ChemElectroChem, vol. 8, Art. no. 10, 2021.
    2. M. Kindelmann et al., “Segregation-controlled densification and grain growth in rare earth-doped Y<sub>2</sub>O<sub>3</sub>,” Journal of the American Ceramic Society, vol. 104, Art. no. 10, 2021.
    3. M. Ihrig et al., “Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> solid electrolyte sintered by the ultrafast high-temperature method,” Journal of the European Ceramic Society, vol. 41, Art. no. 12, 2021.
    4. O. Guillon, R. A. De Souza, T. P. Mishra, and W. Rheinheimer, “Electric-field-assisted processing of ceramics: Nonthermal effects and related mechanisms,” MRS Bulletin, vol. 46, Art. no. 1, 2021.
    5. J. E. Blendell and W. Rheinheimer, “Solid-State Sintering,” Encyclopedia of Materials: Technical Ceramics and Glasses: Volume 1-3, vol. 1, pp. V1–249, 2021.
    6. L. Porz et al., “Dislocation-toughened ceramics,” Materials Horizons, vol. 8, Art. no. 5, 2021.
    7. X. L. Phuah, W. Rheinheimer, Akriti, L. Dou, and H. Wang, “Formation of liquid phase and nanostructures in flash sintered ZnO,” Scripta Materialia, vol. 195, 2021.
    8. K. S. N. Vikrant et al., “Modeling of flash sintering of ionic ceramics,” MRS Bulletin, vol. 46, Art. no. 1, 2021.
  5. 2020

    1. A. P. Schlup, W. J. Costakis, W. Rheinheimer, R. W. Trice, and J. P. Youngblood, “Hot-pressing platelet alumina to transparency,” Journal of the American Ceramic Society, vol. 103, Art. no. 4, 2020.
    2. W. Rheinheimer, D. Lowing, and J. E. Blendell, “Grain growth in Nio?MgO and its dependence on faceting and the equilibrium crystal shape,” Scripta Materialia, vol. 178, pp. 236–239, 2020.
    3. W. Rheinheimer, J. E. Blendell, and C. A. Handwerker, “Equilibrium and kinetic shapes of grains in polycrystals,” Acta Materialia, vol. 191, pp. 101–110, 2020.
    4. A. Trenkle et al., “Nondestructive evaluation of 3D microstructure evolution in strontium titanate,” Journal of Applied Crystallography, vol. 53, pp. 349–359, 2020.
    5. X. L. Phuah et al., “Field-assisted growth of one-dimensional ZnO nanostructures with high defect density,” Nanotechnology, Nov. 2020, doi: 10.1088/1361-6528/abcb2f.
    6. K. S. N. Vikrant, W. Rheinheimer, and R. E. Garc\’ıa, “Electrochemical drag effect on grain boundary motion in ionic ceramics,” npj Computational Materials, vol. 6, Art. no. 1, Oct. 2020, doi: 10.1038/s41524-020-00418-z.
  6. 2019

    1. H. Sternlicht et al., “Characterization of grain boundary disconnections in SrTiO<inf>3</inf> Part II: the influence of superimposed disconnections on image analysis,” Journal of Materials Science, vol. 54, Art. no. 5, 2019.
    2. P. Xu et al., “Origin of High Interfacial Resistances in Solid-State Batteries: Interdiffusion and Amorphous Film Formation in Li<inf>0.33</inf>La<inf>0.57</inf>TiO<inf>3</inf>/LiMn<inf>2</inf>O<inf>4</inf> Half Cells,” ChemElectroChem, vol. 6, Art. no. 17, 2019.
    3. J. Cho et al., “Study of deformation mechanisms in flash-sintered yttria-stabilized zirconia by in-situ micromechanical testing at elevated temperatures,” Materials Research Letters, vol. 7, Art. no. 5, 2019.
    4. W. Rheinheimer, E. Schoof, M. Selzer, B. Nestler, and M. J. Hoffmann, “Non-Arrhenius grain growth in strontium titanate: Quantification of bimodal grain growth,” Acta Materialia, vol. 174, pp. 105–115, 2019.
    5. T. Leonhard et al., “Probing the Microstructure of Methylammonium Lead Iodide Perovskite Solar Cells,” Energy Technology, vol. 7, Art. no. 3, 2019.
    6. J. Hötzer, M. Seiz, M. Kellner, W. Rheinheimer, and B. Nestler, “Phase-field simulation of solid state sintering,” Acta Materialia, vol. 164, pp. 184–195, 2019.
    7. W. Rheinheimer, J. P. Parras, J.-H. Preusker, R. A. De Souza, and M. J. Hoffmann, “Grain growth in strontium titanate in electric fields: The impact of space-charge on the grain-boundary mobility,” Journal of the American Ceramic Society, vol. 102, Art. no. 6, 2019.
    8. W. Rheinheimer, X. L. Phuah, H. Wang, F. Lemke, M. J. Hoffmann, and H. Wang, “The role of point defects and defect gradients in flash sintering of perovskite oxides,” Acta Materialia, vol. 165, pp. 398–408, 2019.
    9. H. Sternlicht, W. Rheinheimer, R. E. Dunin-Borkowski, M. J. Hoffmann, and W. D. Kaplan, “Characterization of grain boundary disconnections in SrTiO<inf>3</inf> part I: the dislocation component of grain boundary disconnections,” Journal of Materials Science, vol. 54, Art. no. 5, 2019.
    10. V. Rehn, J. Hötzer, W. Rheinheimer, M. Seiz, C. Serr, and B. Nestler, “Phase-field study of grain growth in porous polycrystals,” Acta Materialia, vol. 174, pp. 439–449, 2019.
  7. 2018

    1. V. Rehn et al., “The impact of pores on microstructure evolution: A phase-field study of pore-grain boundary interaction,” High Performance Computing in Science and Engineering’ 17: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2017, pp. 485–502, 2018.
    2. M. N. Kelly, W. Rheinheimer, M. J. Hoffmann, and G. S. Rohrer, “Anti-thermal grain growth in SrTiO<inf>3</inf>: Coupled reduction of the grain boundary energy and grain growth rate constant,” Acta Materialia, vol. 149, pp. 11–18, 2018.
    3. M. Hinterstein et al., “Influence of microstructure on symmetry determination of piezoceramics,” Journal of Applied Crystallography, vol. 51, pp. 670–678, 2018.
    4. T. Leonhard et al., “Probing the microstructure of methylammonium lead iodide solar cells,” Optics InfoBase Conference Papers, vol. Part F116-OSE 2018, 2018.
  8. 2017

    1. W. Rheinheimer, F. J. Altermann, and M. J. Hoffmann, “The equilibrium crystal shape of strontium titanate: Impact of donor doping,” Scripta Materialia, vol. 127, pp. 118–121, 2017.
    2. F. Lemke, W. Rheinheimer, and M. J. Hoffmann, “A comparison of power controlled flash sintering and conventional sintering of strontium titanate,” Scripta Materialia, vol. 130, pp. 187–190, 2017.
  9. 2016

    1. W. Rheinheimer and M. J. Hoffmann, “Grain growth in perovskites: What is the impact of boundary transitions?,” Current Opinion in Solid State and Materials Science, vol. 20, Art. no. 5, 2016.
    2. W. Rheinheimer, M. Fülling, and M. J. Hoffmann, “Grain growth in weak electric fields in strontium titanate: Grain growth acceleration by defect redistribution,” Journal of the European Ceramic Society, vol. 36, Art. no. 11, 2016.
    3. F. Lemke, W. Rheinheimer, and M. J. Hoffmann, “Sintering and grain growth in SrTiO<inf>3</inf>: Impact of defects on kinetics,” Journal of the Ceramic Society of Japan, vol. 124, Art. no. 4, 2016.
    4. J. Hötzer, V. Rehn, W. Rheinheimer, M. J. Hoffmann, and B. Nestler, “Phase-field study of pore-grain boundary interaction,” Journal of the Ceramic Society of Japan, vol. 124, Art. no. 4, 2016.
  10. 2015

    1. W. Rheinheimer et al., “The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution,” Acta Materialia, vol. 82, pp. 32–40, 2015.
    2. H. Sternlicht, W. Rheinheimer, M. J. Hoffmann, and W. D. Kaplan, “The mechanism of grain boundary motion in SrTiO<inf>3</inf>,” Journal of Materials Science, vol. 51, Art. no. 1, 2015.
    3. W. Rheinheimer and M. J. Hoffmann, “Non-Arrhenius behavior of grain growth in strontium titanate: New evidence for a structural transition of grain boundaries,” Scripta Materialia, vol. 101, pp. 68–71, 2015.
    4. W. Rheinheimer, M. Bäurer, and M. J. Hoffmann, “A reversible wetting transition in strontium titanate and its influence on grain growth and the grain boundary mobility,” Acta Materialia, vol. 101, pp. 80–89, 2015.
    5. W. Rheinheimer, M. Bäurer, C. A. Handwerker, J. E. Blendell, and M. J. Hoffmann, “Growth of single crystalline seeds into polycrystalline strontium titanate: Anisotropy of the mobility, intrinsic drag effects and kinetic shape of grain boundaries,” Acta Materialia, vol. 95, pp. 111–123, 2015.
  11. 2013

    1. M. Syha et al., “Combining x-ray diffraction contrast tomography and mesoscale grain growth simulations in strontium titanate: An integrated approach for the investigation of microstructure evolution,” Ceramic Engineering and Science Proceedings, vol. 33, Art. no. 10, 2013.
  12. 2012

    1. M. Syha et al., “Three-dimensional grain structure of sintered bulk strontium titanate from X-ray diffraction contrast tomography,” Scripta Materialia, vol. 66, Art. no. 1, 2012.
    2. M. Syha et al., “Interface orientation distribution during grain growth in bulk SrTiO <inf>3</inf> measured by means of 3D X-ray diffraction contrast tomography,” Materials Research Society Symposium Proceedings, vol. 1421, pp. 58–62, 2012.
2010 - 2013

Doktorand, Institut für angewandte Materialien (IAM) - Keramische Werkstoffe und Technologien, Karlsruher Institut für Technologie,

Titel: "Grenzflächenanisotropie von SrTiO3"

2013 - 2014 Postdoktorand in Zusammenarbeit mit der Robert Bosch GmbH und dem Institut für angewandte Materialien (IAM) - Keramische Werkstoffe und Technologien, Karlsruher Institut für Technologie
2015 - 2017 Gruppenleiter, Institut für angewandte Materialien (IAM) - Keramische Werkstoffe und Technologien, Karlsruher Institut für Technologie
2018 - 2019 Visiting Professor, School of Materials Engineering, Purdue Universität, USA
2020 Postdoktorand, Nichtmetallisch-Anorganische Werkstoffe, TU Darmstadt
2020 - 2022 Emmy Noether Gruppenleiter, "Grenzflächen in Funktionskeramiken: Ein Weg zur Optimierung von Materialeigenschaften", Forschungszentrum Jülich
2022 - 2023 Professor, Grenzflächen in Funktionskeramiken, RWTH Aachen
seit 2023 Professor und Institutsleiter, Institut für Keramische Materialien und Technologien, Universität Stuttgart

 

Zum Seitenanfang